
d02 – Ordinary Differential Equations d02pcc

nag ode ivp rk range (d02pcc)

1. Purpose

nag ode ivp rk range (d02pcc) is a function for solving the initial value problem for a first order
system of ordinary differential equations using Runge-Kutta methods.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_range(Integer neq,
void (*f) (Integer neq, double t, double y[],

double yp[], Nag_User *comm),
double twant, double *tgot,
double ygot[], double ypgot[], double ymax[],
Nag_ODE_RK *opt, Nag_User *comm, NagError *fail)

3. Description

This function and its associated functions (nag ode ivp rk setup (d02pvc), nag ode ivp rk errass
(d02pzc)) solve the initial value problem for a first order system of ordinary differential equations.
The functions, based on Runge-Kutta methods and derived from RKSUITE (Brankin et al , 1991)
integrate

y′ = f(t, y) given y(t0) = y0

where y is the vector of neq solution components and t is the independent variable.

This function is designed for the usual task, namely to compute an approximate solution at a
sequence of points. You must first call nag ode ivp rk setup (d02pvc) to specify the problem and
how it is to be solved. Thereafter you call nag ode ivp rk range repeatedly with successive values
of twant, the points at which you require the solution, in the range from tstart to tend (as specified
in nag ode ivp rk setup (d02pvc)). In this manner nag ode ivp rk range returns the point at which
it has computed a solution tgot (usually twant), the solution there ygot and its derivative ypgot. If
nag ode ivp rk range encounters some difficulty in taking a step toward twant, then it returns the
point of difficulty tgot and the solution and derivative computed there ygot and ypgot.

In the call to nag ode ivp rk setup (d02pvc) you can specify the first step size for
nag ode ivp rk range to attempt or that it compute automatically an appropriate value. Thereafter
nag ode ivp rk range estimates an appropriate step size for its next step. This value and other
details of the integration can be obtained after any call to nag ode ivp rk range by examining the
contents of the structure opt, see Section 4. The local error is controlled at every step as specified
in nag ode ivp rk setup (d02pvc). If you wish to assess the true error, you must set errass =
Nag ErrorAssess on in the call to nag ode ivp rk setup (d02pvc). This assessment can be obtained
after any call to nag ode ivp rk range by a call to the function nag ode ivp rk errass (d02pzc).

For more complicated tasks, you are referrred to functions nag ode ivp rk onestep (d02pdc),
nag ode ivp rk interp (d02pxc) and nag ode ivp rk reset tend (d02pwc).

4. Parameters

neq
Input: the number of ordinary differential equations in the system to be solved.
Constraint: neq ≥ 1.

f
This function must evaluate the first derivatives y′

i (that is the functions fi) for given values
of the arguments t, yi.

[NP3275/5/pdf] 3.d02pcc.1

nag ode ivp rk range NAG C Library Manual

void f (Integer neq, double t, double y[], double yp[], Nag_User *comm)

neq
Input: the number of differential equations.

t
Input: the current value of the independent variable, t.

y[neq]
Input: the current values of the dependent variables, yi for i = 1, 2, . . . , neq.

yp[neq]
Output: the values of fi for i = 1, 2, . . . , neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

twant
Input: the next value of the independent variable, t, where a solution is desired.
Constraints: twant must be closer to tend than the previous of tgot (or tstart on the first call
to nag ode ivp rk range); see nag ode ivp rk setup (d02pvc) for a description of tstart and
tend. twant must not lie beyond tend in the direction of integration.

tgot
Output: the value of the independent variable t at which a solution has been computed. On
successful exit with fail.code = NE NOERROR, tgot will equal twant. For non-trivial values
of fail.code (i.e., those not related to an invalid call of nag ode ivp rk range) a solution has
still been computed at the value of tgot but in general tgot will not equal twant.

ygot[neq]
Input: on the first call to nag ode ivp rk range, ygot need not be set. On all subsequent calls
ygot must remain unchanged.
Output: an approximation to the true solution at the value of tgot. At each step of the
integration to tgot, the local error has been controlled as specified in nag ode ivp rk setup
(d02pvc). The local error has still been controlled even when tgot �= twant, that is after a
return with a non-trivial error.

ypgot[neq]
Output: an approximation to the first derivative of the true solution at tgot.

ymax[neq]
Input: on the first call to nag ode ivp rk range, ymax need not be set. On all subsequent
calls ymax must remain unchanged.
Output: ymax[i−1] contains the largest value of | yi | computed at any step in the integration
so far.

opt
Input: pointer to a structure of type Nag ODE RK as initialised by the setup function
nag ode ivp rk setup (d02pvc).
Output: the following structure members hold information as follows:

totfcn - Integer
The total number of evaluations of f used in the primary integration so far; this does
not include evaluations of f for the secondary integration specified by a prior call to
nag ode ivp rk setup (d02pvc) with errass = Nag ErrorAssess on.

stpcst - Integer
The cost in terms of number of evaluations of f of a typical step with the method being

3.d02pcc.2 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pcc

used for the integration. The method is specified by the parameter method in a prior call to
nag ode ivp rk setup (d02pvc).

waste - double
The number of attempted steps that failed to meet the local error requirement divided by the
total number of steps attempted so far in the integration. A “large” fraction indicates that
the integrator is having trouble with the problem being solved. This can happen when the
problem is “stiff” and also when the solution has discontinuities in a low order derivative.

stpsok - Integer
The number of accepted steps.

hnext - double
The step size the integrator plans to use for the next step.

comm
Input/Output: pointer to a structure of type Nag User with the following member:

p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE PREV CALL
The previous call to a function had resulted in a severe error. You must call
nag ode ivp rk setup (d02pvc) to start another problem.

NE NO SETUP
The setup function nag ode ivp rk setup (d02pvc) has not been called.

NE RK INVALID CALL
The function to be called as specified in the setup routine nag ode ivp rk setup (d02pvc) was
nag ode ivp rk onestep (d02pdc). However the actual call was made to nag ode ivp rk range.
This is not permitted.

NE PREV CALL INI
The previous call to the function nag ode ivp rk range had resulted in a severe error. You
must call nag ode ivp rk setup (d02pvc) to start another problem.

NE NEQ
The value of neq supplied is not the same as that given to the setup function
nag ode ivp rk setup (d02pvc).
neq = 〈value〉 but the value given to nag ode ivp rk setup (d02pvc) was 〈value〉.

NE RK TGOT EQ TEND
The call to nag ode ivp rk range has been made after reaching tend. The previous call
to nag ode ivp rk range resulted in tgot (tstart on the first call) = tend. You must call
nag ode ivp rk setup (d02pvc) to start another problem.

NE RK TGOT RANGE TEND
The call to nag ode ivp rk range has been made with a twant that does not lie between the
previous value of tgot (tstart on the first call) and tend. This is not permitted.

NE RK TGOT RANGE TEND CLOSE
The call to nag ode ivp rk range has been made with a twant that does not lie between the
previous value of tgot (tstart on the first call) and tend. This is not permitted. However
twant is very close to tend, so you may have meant it to be tend exactly. Check your program.

[NP3275/5/pdf] 3.d02pcc.3

nag ode ivp rk range NAG C Library Manual

NE RK TWANT CLOSE TGOT
The call to nag ode ivp rk range has been made with a twant that is not sufficiently different
from the last value of tgot (tstart on the first call). When using method = Nag RK 7 8, it
must differ by at least 〈value〉.

NE RK PDC STEP
In order to satisfy the error requirements nag ode ivp rk range would have to use a step size
of 〈value〉 at current t = 〈value〉. This is too small for the machine precision.

NE RK PDC GLOBAL ERROR T
The global error assessment may not be reliable for t past tgot. tgot = 〈value〉.

NE RK PDC GLOBAL ERROR S
The global error assessment algorithm failed at the start of the integration.

NE STIFF PROBLEM
The problem appears to be stiff.

NW RK TOO MANY
Approximately 〈value〉 function evaluations have been used to compute the solution since the
integration started or since this message was last printed.

NE RK PCC METHOD
The efficiency of the integration has been degraded. Consider calling the set up function
nag ode ivp rk setup (d02pvc) to re-initialize the integration at the current point with the
method changed to NE RK 4 5. Alternatively nag ode ivp rk range (d02pcc) can be called
again to resume at the current point.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

NE MEMORY FREED
Internally allocated memory has been freed by a call to nag ode ivp rk free (d02ppc) without
a subsequent call to the set up function nag ode ivp rk setup (d02pvc).

6. Further Comments

If nag ode ivp rk range returns with fail.code = NE RK PDC STEP and the accuracy specified
by tol and thres is really required then you should consider whether there is a more fundamental
difficulty. For example, the solution may contain a singularity. In such a region the solution
components will usually be of a large magnitude. Successive output values of ygot and ymax
should be monitored (or the routine nag ode ivp rk onestep (d02pdc) should be used since this
takes one integration step at a time) with the aim of trapping the solution before the singularity.
In any case numerical solution cannot be continued through a singularity, and analytical treatment
may be necessary.

Performance statistics are available after any return from nag ode ivp rk range by examining
the structure opt see Section 4. If errass was set to Nag ErrorAssess on in the call to
nag ode ivp rk setup (d02pvc), global error assessment is available after any return from
nag ode ivp rk range (except when the error is due to incorrect input arguments or incorrect set-
up) by a call to the routine nag ode ivp rk errass (d02pzc). The approximate extra number of
evaluations of f used is given by 2 × stpsok × stpcst for method NAG RK 4 5 or NAG RK 7 8
and 3 × stpsok × stpcst for method = NAG RK 2 3.

After a failure with fail.code = NE RK PDC STEP, NE RK PDC GLOBAL ERROR T or
NE RK PDC GLOBAL ERROR S the diagnostic routine nag ode ivp rk errass (d02pzc) may be
called only once.

If nag ode ivp rk range returns with fail.code = NE STIFF PROBLEM then it is advisable to
change to another code more suited to the solution of stiff problems. nag ode ivp rk range will not
return with fail.code = NE STIFF PROBLEM if the problem is actually stiff but it is estimated
that integration can be completed using less function evaluations than already computed.

3.d02pcc.4 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pcc

6.1. Accuracy

The accuracy of integration is determined by the parameters tol and thres in a prior call to
nag ode ivp rk setup (d02pvc). Note that only the local error at each step is controlled by these
parameters. The error estimates obtained are not strict bounds but are usually reliable over one
step. Over a number of steps the overall error may accumulate in various ways, depending on the
properties of the differential system.

6.2. References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: a suite of Runge-Kutta codes for
the initial value problem for ODEs SoftReport 91-S1, Department of Mathematics, Southern
Methodist University, Dallas, TX 75275, U.S.A.

7. See Also

nag ode ivp adams gen (d02cjc)
nag ode ivp adams roots (d02qfc)
nag ode ivp rk setup (d02pvc)
nag ode ivp rk errass (d02pzc)

8. Example

We solve the equation

y′′ = −y, y(0) = 0, y′(0) = 1

reposed as

y′
1 = y2 y′

2 = −y1

over the range [0, 2π] with initial conditions y1 = 0.0 and y2 = 1.0. We use relative error control
with threshold values of 1.0e−8 for each solution component and compute the solution at intervals
of length π/4 across the range. We use a low order Runge-Kutta method (method = Nag RK 2 3)
with tolerances tol = 1.0e−3 and tol = 1.0e−4 in turn so that we may compare the solutions. The
value of π is obtained by using X01AAC.

See also the example program for nag ode ivp rk errass (d02pzc).

8.1. Program Text

/* nag_ode_ivp_rk_range(d02pcc) Example Program
*
* Copyright 1994 Numerical Algorithms Group.
*
* Mark 3, 1994.
*
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef NAG_PROTO
static void f(Integer neq, double t1, double y[], double yp[], Nag_User *comm);
#else
static void f();
#endif

#define NEQ 2
#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0

[NP3275/5/pdf] 3.d02pcc.5

nag ode ivp rk range NAG C Library Manual

#define FOUR 4.0

main()
{
Integer neq;
Nag_RK_method method;
double hstart, pi, tgot, tend, tinc;
double tol, tstart, twant;
Integer i, j, nout;
double thres[NEQ], ygot[NEQ], ymax[NEQ], ypgot[NEQ], ystart[NEQ];
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_User comm;

Vprintf("d02pcc Example Program Results\n");

/* Set initial conditions and input for d02pvc */
neq = NEQ;
pi = X01AAC;
tstart = ZERO;
ystart[0] = ZERO;
ystart[1] = ONE;
tend = TWO*pi;
for (i=0; i<neq; i++)

thres[i] = 1.0e-8;
errass = Nag_ErrorAssess_off;
hstart = ZERO;
method = Nag_RK_2_3;

/*
* Set control for output
*/

nout = 8;
tinc = (tend-tstart)/nout;

for (i=1; i<=2; i++)
{
if (i==1) tol = 1.0e-3;
if (i==2) tol = 1.0e-4;
d02pvc(neq, tstart, ystart, tend, tol, thres, method,

Nag_RK_range, errass, hstart, &opt, NAGERR_DEFAULT);

Vprintf("\nCalculation with tol = %8.1e\n\n",tol);
Vprintf (" t y1 y2\n\n");
Vprintf("%8.3f %8.3f %8.3f\n", tstart, ystart[0], ystart[1]);
for (j=nout-1; j>=0; j--)
{
twant = tend - j*tinc;
d02pcc(neq, f, twant, &tgot, ygot, ypgot, ymax, &opt, &comm,

NAGERR_DEFAULT);
Vprintf("%8.3f %8.3f %8.3f\n", tgot, ygot[0], ygot[1]);

}
Vprintf("\nCost of the integration in evaluations of f is %ld\n\n",

opt.totfcn);
d02ppc(&opt);

}
exit(EXIT_SUCCESS);

}
#ifdef NAG_PROTO
static void f(Integer neq, double t, double y[], double yp[], Nag_User *comm)
#else

static void f(neq, t, y, yp, comm)
Integer neq;
double t;
double y[], yp[];
Nag_User *comm;

#endif

{
yp[0] = y[1];

3.d02pcc.6 [NP3275/5/pdf]

d02 – Ordinary Differential Equations d02pcc

yp[1] = -y[0];
}

8.2. Program Data

None.

8.3. Program Results

d02pcc Example Program Results

Calculation with tol = 1.0e-03

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 0.999 0.000
2.356 0.706 -0.706
3.142 0.000 -0.999
3.927 -0.706 -0.706
4.712 -0.998 0.000
5.498 -0.705 0.706
6.283 0.001 0.997

Cost of the integration in evaluations of f is 124

Calculation with tol = 1.0e-04

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 1.000 0.000
2.356 0.707 -0.707
3.142 0.000 -1.000
3.927 -0.707 -0.707
4.712 -1.000 0.000
5.498 -0.707 0.707
6.283 0.000 1.000

Cost of the integration in evaluations of f is 235

[NP3275/5/pdf] 3.d02pcc.7

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

